If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2+8p-1=0
a = 10; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·10·(-1)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{26}}{2*10}=\frac{-8-2\sqrt{26}}{20} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{26}}{2*10}=\frac{-8+2\sqrt{26}}{20} $
| 6x-18-6x=7 | | -2(x-50-4=-22 | | -6=8x+35 | | 7t-9=5 | | 5(5-2y)+10y=25 | | 3y-21=31 | | 3y+8=91 | | 3y+8=43 | | 2/3n=52 | | 26x-9=5(5x+5)-16 | | 3n=n+18 | | 9(v+3)-3v=3(2v+2)-9 | | 15(x=1)=-3x+9 | | 5x^2+8x-16=0 | | 13=-4{3x+1}+13x | | 74+64+x=180 | | d-(-2)=1 | | 2^3x-1=32 | | 37a-41=a+50 | | 4x+4=51 | | 2(x-5)+7=22 | | 3z+16=5z-37 | | 48=6(v-2) | | 4z-46+30=z+48 | | 4z-16=z+48 | | 25x+40=25x-40 | | 5(u-6)=7u-46 | | 7-3y=20 | | 7-3y(5-4)=20 | | 7-37y(5-4)=20 | | 17-q/8=13 | | 6x=-4x+70 |